Quantum Theory and the Electronic Structure of Atoms

Chapter 7

Properties of Waves

Wavelength (λ) is the distance between identical points on successive waves.

Amplitude is the vertical distance from the midline of a wave to the peak or trough.

Properties of Waves

Frequency (v) is the number of waves that pass through a particular point in 1 second ($\mathrm{Hz}=1$ cycle/s).

The speed (u) of the wave $=\lambda \times v$

Maxwell (1873), proposed that visible light consists of electromagnetic waves.

Electromagnetic

radiation is the emission and transmission of energy in the form of electromagnetic waves.

Speed of light (c) in vacuum $=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$

> All electromagnetic radiation
> $\lambda \times v=c$

Mystery \#1, "Black Body Problem" Solved by Planck in 1900

Energy (light) is emitted or

 absorbed in discrete units (quantum).
$\mathrm{E}=\mathrm{h} \times \mathrm{v}$
Planck's constant (h) $\mathrm{h}=6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$

Mystery \#2, "Photoelectric Effect" Solved by Einstein in 1905

Light has both:

1. wave nature
2. particle nature

Photon is a "particle" of light

$$
\begin{aligned}
\mathrm{h} v & =\mathrm{KE}+\mathrm{BE} \\
\mathrm{KE} & =\mathrm{h} v-\mathrm{BE}
\end{aligned}
$$

When copper is bombarded with high-energy electrons, X rays are emitted. Calculate the energy (in joules) associated with the photons if the wavelength of the X rays is 0.154 nm .
$\mathrm{E}=\mathrm{h} \times \mathrm{v}$
$\mathrm{E}=\mathrm{h} \times \mathrm{c} / \lambda$
$E=6.63 \times 10^{-34}(\mathrm{~J} .8) \times 3.00 \times 10^{8}$ (ph / s) $/ 0.154 \times 10^{-9}$ (nK)
$E=1.29 \times 10^{-15} \mathrm{~J}$

Bohr's Model of the Atom (1913)

1. e^{-}can only have specific (quantized) energy values
2. light is emitted as e^{-} moves from one energy level to a lower energy level

$$
\mathrm{E}_{n}=-\mathrm{R}_{\mathrm{H}}\left(\frac{1}{n^{2}}\right)
$$

n (principal quantum number) $=1,2,3, \ldots$
$\mathrm{R}_{\mathrm{H}}($ Rydberg constant $)=2.18 \times 10^{-18} \mathrm{~J}$

Calculate the wavelength (in nm) of a photon emitted by a hydrogen atom when its electron drops from the $n=5$ state to the $n=3$ state.

$$
\begin{aligned}
\mathrm{E}_{\text {photon }} & =\Delta \mathrm{E}=\mathrm{R}_{\mathrm{H}}\left(\frac{1}{n_{i}^{2}}-\frac{1}{n_{f}^{2}}\right) \\
\mathrm{E}_{\text {photon }} & =2.18 \times 10^{-18} \mathrm{~J} \times(1 / 25-1 / 9) \\
\mathrm{E}_{\text {photon }} & =\Delta \mathrm{E}=-1.55 \times 10^{-19} \mathrm{~J} \\
\mathrm{E}_{\text {photon }} & =\mathrm{h} \times \mathrm{c} / \lambda \\
\lambda & =\mathrm{h} \times \mathrm{c} / \mathrm{E}_{\text {photon }} \\
\lambda & =6.63 \times 10^{-34}(.0 .8) \times 3.00 \times 10^{8}(\mathrm{~m} / \mathrm{s}) / 1.55 \times 10^{-19} / \mathrm{J} \\
\lambda & =1280 \mathrm{~nm}
\end{aligned}
$$

What is the de Broglie wavelength (in nm) associated with a 2.5 g Ping-Pong ball traveling at $15.6 \mathrm{~m} / \mathrm{s}$?
$\lambda=\mathrm{h} / \mathrm{mu} \quad \mathrm{h}$ in J.s m in $\mathrm{kg} \quad \mathrm{u}$ in (m / s)
$\lambda=6.63 \times 10^{-34} /\left(2.5 \times 10^{-3} \times 15.6\right)$
$\lambda=1.7 \times 10^{-32} \mathrm{~m}=1.7 \times 10^{-23} \mathrm{~nm}$

Schrodinger Wave Equation

In 1926 Schrodinger wrote an equation that described both the particle and wave nature of the e^{-} Wave function (Ψ) describes:

1. energy of e^{-}with a given Ψ
2. probability of finding e^{-}in a volume of space Schrodinger's equation can only be solved exactly for the hydrogen atom. Must approximate its solution for multi-electron systems.

Schrodinger Wave Equation

$$
\Psi=\mathrm{fn}\left(\mathrm{n}, l, \mathrm{~m}_{l}, \mathrm{~m}_{\mathrm{s}}\right)
$$

principal quantum number n
$\mathrm{n}=1,2,3,4, \ldots$.

Schrodinger Wave Equation

$$
\Psi=\mathrm{fn}\left(\mathrm{n}, l, \mathrm{~m}_{l}, \mathrm{~m}_{\mathrm{s}}\right)
$$

angular momentum quantum number / for a given value of $n, l=0,1,2,3, \ldots n-1$

$$
\begin{array}{cll}
\mathrm{n}=1, I=0 & I=0 & \text { s orbital } \\
\mathrm{n}=2, I=0 \text { or } 1 & I=1 & \text { p orbital } \\
\mathrm{n}=3, l=0,1, \text { or } 2 & I=2 & \text { d orbital } \\
l=3 & \text { f orbital }
\end{array}
$$

Shape of the "volume" of space that the e- occupies

I = 2 (d orbitals)

Schrodinger Wave Equation

$$
\Psi=\mathrm{fn}\left(\mathrm{n}, l, \mathrm{~m}_{l}, \mathrm{~m}_{\mathrm{s}}\right)
$$

magnetic quantum number m_{l}
for a given value of I
$m_{l}=-I, \ldots, 0, \ldots+l$
if $I=1$ (p orbital), $m_{l}=-1,0$, or 1
if $I=2\left(d\right.$ orbital), $m_{l}=-2,-1,0,1$, or 2

orientation of the orbital in space

Schrodinger Wave Equation

$$
\Psi=\mathrm{fn}\left(\mathrm{n}, l, \mathrm{~m}_{l}, \mathrm{~m}_{\mathrm{s}}\right)
$$

Existence (and energy) of electron in atom is described by its unique wave function Ψ.

Pauli exclusion principle - no two electrons in an atom can have the same four quantum numbers.

Each seat is uniquely identified (E, R12, S8) Each seat can hold only one individual at a time

TABLE 7.2 Relation Between Quantum Numbers and Atomic Orbitals
\(\left.$$
\begin{array}{ccccc}\hline \boldsymbol{n} & \boldsymbol{\ell} & \boldsymbol{m}_{\boldsymbol{\ell}} & \begin{array}{c}\text { Number } \\
\text { of Orbitals }\end{array} & \begin{array}{c}\text { Atomic } \\
\text { Orbital Designations }\end{array}
$$

\hline 1 \& 0 \& 0 \& 1 \& 1 s

2 \& 0 \& 0 \& 1 \& 2 s

\& 1 \& -1,0,1 \& 3 \& 2 p_{x}, 2 p_{y}, 2 p_{z}

3 \& 0 \& 0 \& 1 \& 3 s\end{array}\right]\)| $3 p_{x}, 3 p_{y}, 3 p_{z}$ |
| :--- |
| |
| |
| 1 |

Schrodinger Wave Equation

$$
\Psi=\mathrm{fn}\left(\mathrm{n}, l, \mathrm{~m}_{l}, \mathrm{~m}_{\mathrm{s}}\right)
$$

Shell - electrons with the same value of n

Subshell - electrons with the same values of n and $/$

Orbital - electrons with the same values of n, I, and m_{l}

How many electrons can an orbital hold?
If n, l, and m_{l} are fixed, then $m_{s}=1 / 2$ or $-1 / 2$

$$
\Psi=\left(\mathrm{n}, l, \mathrm{~m}_{l, 1 / 2}\right) \text { or } \Psi=\left(\mathrm{n}, l, \mathrm{~m}_{l,},-1 / 2\right)
$$

An orbital can hold 2 electrons

How many 2 p orbitals are there in an atom?

How many electrons can be placed in the 3d subshell?
$\mathrm{n}=3$
\downarrow
If $I=2$, then $m_{l}=-2,-1,0,+1$, or +2
3d 5 orbitals which can hold a total of $10 e^{-}$
$l \xlongequal{\uparrow}=2$

The most stable arrangement of electrons in subshells is the one with the greatest number of parallel spins (Hund's rule).

Electron configuration is how the electrons are distributed among the various atomic orbitals in an atom.
principal quantum
number n

Orbital diagram

H

What is the electron configuration of Mg ?
Mg 12 electrons
$1 \mathrm{~s}<2 \mathrm{~s}<2 \mathrm{p}<3 \mathrm{~s}<3 \mathrm{p}<4 \mathrm{~s}$
$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} \quad 2+2+6+2=12$ electrons
Abbreviated as [Ne]3s ${ }^{2} \quad[\mathrm{Ne}] 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6}$

What are the possible quantum numbers for the last (outermost) electron in Cl ?

Cl 17 electrons $1 \mathrm{~s}<2 \mathrm{~s}<2 \mathrm{p}<3 \mathrm{~s}<3 \mathrm{p}<4$ s
$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{5} \quad 2+2+6+2+5=17$ electrons
Last electron added to $3 p$ orbital

$$
\mathrm{n}=3 \quad l=1 \quad \mathrm{~m}_{l}=-1,0, \text { or }+1 \quad \mathrm{~m}_{\mathrm{s}}=1 / 2 \text { or }-1 / 2
$$

TABLE 7.3 Atomic Number	The Ground-State Electron Configurations of the Elements*							
	Symbol	Electron Configuration	Atomic Number	Symbol	Electron Configuration	Atomic Number	Symbol	Electron Configuration
I	H	$1 s^{1}$	38	Sr	$[\mathrm{Kr}] 5{ }^{2}$	75	Re	[Xe$] 65^{2} 4 f^{14} 5 d^{5}$
2	He	15^{2}	39	Y	$[\mathrm{Kr}] 5 \mathrm{~s}^{2} 4 d^{\prime}$	76	Os	[Xe] $6 \sigma^{2} 4 i^{14} 5 d^{6}$
3	Li	[He$]^{2} \mathrm{~s}^{\prime}$	40	Zr	[Kr$] 5 \mathrm{~s}^{2} 4 d^{2}$	77	Ir	[Xe$] 66^{2} 4 \mathrm{l}^{14} 5 d^{7}$
4	Be	[He$]_{2} \mathrm{~s}^{2}$	41	Nb	[Kr] $5 s^{1} 4 d^{4}$	78	Pt	[Xe] $6 \sigma^{1} 4 \mathrm{f}^{14} 5 d^{9}$
5	B	[He] $2 \mathrm{r}^{2} 2 p^{1}$	42	Mo	[Kr] $5 s^{1} 4 d^{5}$	79	Au	[Xe] $6 s^{1} 44^{14} 5 d^{10}$
6	c	$[\mathrm{He}] 2 \mathrm{~s}^{2} 2 p^{2}$	43	Tc	[Kr] $5 \mathrm{~s}^{2} 4 d^{5}$	80	Hg	[Xe$] 6 \sigma^{2} 4 /^{14} 5 d^{10}$
7	N	[He$] 2 s^{2} 2 p^{3}$	44	Ru	[Kr] $5 s^{1} 4 d^{7}$	81	T	[Xe]6s $\left.{ }^{2} 4\right)^{14} 5 d^{10} 6 p^{1}$
8	O	[He$] 2 \mathrm{r}^{2} 2 p^{4}$	45	Rh	$[\mathrm{Kr}] 5 s^{1} 4 d^{5}$	82	Pb	[Xe] $\mathrm{cs}^{2} 4 \int^{14} 5 d^{10} 6 p^{2}$
9	F	[He$] 2 \mathrm{r}^{2} 2 p^{5}$	46	Pd	$[\mathrm{Kr}]+d^{10}$	83	Bi	[Xe] $65^{2} 4 f^{14} 5 d^{10} 6 p^{3}$
10	Ne	$[\mathrm{He}] 2 \mathrm{~s}^{2} 2 p^{6}$	47	Ag	$[\mathrm{Kr}] 5 s^{1} 4 d^{10}$	84	Po	[Xe] $6 \sigma^{2} 4 f^{\prime 4} 5 d^{10} 6 p^{4}$
11	Na	[Ne] $3 \mathrm{~s}^{1}$	48	Cd	$[\mathrm{Kr}] 5 \mathrm{~s}^{2} 4 d^{10}$	85	At	[Xe] $6 \sigma^{2} 4 /^{14} 5 d^{10} 6 p^{5}$
12	Mg	[Ne] $3 s^{2}$	49	In	$[\mathrm{Kr}] 5 \mathrm{~s}^{2} 4 d^{10} 5 p^{1}$	86	Rn	[Xe] $65^{2} 4 /^{14} 5 d^{10} 6 p^{6}$
13	Al	[Ne$] 3 \mathrm{~s}^{2} 3 p^{1}$	50	Sn	$[\mathrm{Kr}] 55^{2} 4 d^{10} 5 p^{2}$	87	Fr	[Rn] ${ }^{\text {d }}{ }^{1}$
14	Si	$[\mathrm{Ne}] 3 \mathrm{~s}^{2} 3 \mathrm{p}^{2}$	51	Sb	[Kr$] 5 \mathrm{~s}^{2} 4 d^{10} 5 p^{3}$	88	Ra	[Rn]75 ${ }^{\text {2 }}$
15	P	[Ne$] 3 s^{2} 3 p^{3}$	52	Te	$[\mathrm{Kr}] 5 s^{2} 4 d^{10} 5 p^{4}$	89	Ac	[Rn]7 $s^{2} 60 d^{\prime}$
16	S	[Ne$] 3 s^{2} 3 p^{4}$	53	1	[KrJ$] s^{2} 4 d^{10} 5 p^{5}$	90	Th	[Rn] $7 s^{2} 66{ }^{2}$
17	C1	[Ne$] 3 s^{2} 3 p^{5}$	54	Xe	[Kr$] 5 s^{2} 4 d^{10} 5 p^{6}$	91	Pa	[Rn$] 775^{2} 5 f^{7} 6 d^{1}$
18	Ar	[Ne$] 3 s^{2} 3 p^{6}$	55	Cs	[Xe] $6 \mathrm{~s}^{1}$	92	U	$[\mathrm{Rn}] 75^{2} 5 f^{\prime} 6 d^{1}$
19	K	[Ar]4s ${ }^{1}$	56	Ba	[Xe] $6{ }^{2}$	93	Np	[Rn] $7 s^{2} 5 y^{-1} 6 d^{1}$
20	Ca	$[\mathrm{Ar}] 4{ }^{2}$	57	La	[Xe] $6 r^{2} 5 d^{\prime \prime}$	94	Pu	[Rn]75 ${ }^{2} 5 j^{6}$
								32

